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Covariant Canonical Formalism of Fields
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The canonical formalism of fields consistent with the covariance principle of
special relativity is given here. The covariant canonical transformations of fields
are affected by 4-generating functions. All dynamical equations of fields, e.g.,
the Hamilton, Euler±Lagrange, and other field equations, are preserved under
the covariant canonical transformations. The dynamical observables are also
invariant under these transformations. The covariant canonical transformations
are therefore fundamental symmetry operations on fields, such that the physical
outcomes of each field theory must be invariant under these transformations. We
give here also the covariant canonical equations of fields. These equations are
the covariant versions of the Hamilton equations. They are defined by a density
functional that is scalar under both the Lorentz and the covariant canonical
transformations of fields.

1. INTRODUCTION

Particle fields are dictated by the covariance principle of the theory of

relativity. This principle has been consistently implemented by the Lagrangian

formalism of fields. The Hamiltonian formalism, on the other hand, is tacitly
related to the time. This noncovariant aspect of the Hamiltonian formalism

has, however, been extended to the whole canonical formalism of fields, such

that the covariance and the canonical aspects of the fields have been foreign

to each other.

One finds the inadequacy of the standard noncovariant canonical formal-
ism of fields in the following observation. In classical particle dynamics, the

canonical transformations are symmetry operations that leave the Hamilton

equations invariant. The Hamiltonian, as an observable, is also invariant

under these transformations. For fields, attention must also be paid to the

invariance of Euler±Lagrange equations under the canonical transformations.

Since the Lagrangian formalism is covariant, we see that the application of
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noncovariant canonical transformations of fields is not adequate to preserve

the Euler±Lagrange equations.

This feature has amounted to very limited applications of the canonical
transformations to fields. We may summarize the situation by a quotation

from a standard reference in the field: ª There has been little exploration of

canonical transformations for classical fields, a subject that for discrete sys-

tems proved to be so rich and consequential, (Goldstein, 1980, p. 567). A

similar point of view has been taken by Merceir (1963).

In this article we undertake the problem of the covariant canonical
formalism. We give the covariant canonical transformations of fields, and

prove that these transformations are genuine symmetry operations on fields.

Under the covariant canonical transformations all field equations and observ-

ables are invariant.

The generalized covariant versions of Hamilton equations are also given

here. These covariant canonical equations are defined by a density functional
that is scalar under both the Lorentz and the covariant canonical transforma-

tions of the fields.

The canonical transformations play a fundamental role in canonical

gravity (Isham, 1993). They find also an important application in the related

subject of spacetime dynamics (Mashkour, 1997). These issues have war-
ranted the renewed interest in the subject.

The general conclusion of this article is summarized as follows: the
physical outcomes of each field theory must be invariant under the covariant
canonical transformation of the fields (Mashkour, 1997).

2. THE HAMILTONIAN FORMALISM

The Hamiltonian formalism shall be the guide for the development of

the covariant canonical formalism of fields. Let {q a (x); a 5 1, 2, . . . , N }

be the totality of the interacting fields. We assume the Lagrangian of these

fields is of first order: L 5 L(q, - q). The Hamiltonian density associated

with this Lagrangian is then (Goldstein, 1980; Merceir, 1963)

H 5 p a - 0q
a 2 L (1)

a 5 1, 2, . . . , N (summation over repeated indices is implied, unless stated
otherwise). Variation of H yields

d H 5 d p a - 0q
a 2 - 0 p a d q a 2 = ? (p a d q a ) (2)

where
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p m
a 5

- L

- ( - m q a )
(3)

We identify the variables p m
a , m 5 0, 1, 2, 3, as the covariant 4-conjugate

momentum of the field q a . The above p a is the time component of this

momentum:

p a [ p0
a (4)

3. THE COVARIANT CANONICAL TRANSFORMATIONS

We demand that the covariant canonical transformations be symmetry

operations on the dynamical equations. Therefore, the Hamilton and the

Euler±Lagrange equations of the fields should be left invariant under these

transformations. We consider the point canonical transformations which relate

the field variables at the same spacetime point. We introduce the 4-generat-
ing functions:

F m 5 F m (q(x, t), q8(x, t)), m 5 0, 1, 2, 3 (5)

The more general case F m 5 F m (q, q8; x) can be handled in a parallel manner.
We write

L 5 p a - 0q
a 2 H (6a)

5 p 8a - 0q8 a 2 H 8 1 - m F m (6b)

The second of the above equations defines the transformed set of vari-
ables (q8 a , p 8b ) such that

p a (x, t) 5 p a
0(x, t) (7a)

5
- F 0

- q a (7b)

p 8a (x, t) 5 p a
0 (x, t) (7c)

5 2
- F 0

- q8 a (7d)

whereas

H 8 5 H 1 = ? F (8)

Apart from the presence of the divergence = ? F in equation (8), the above

relations coincide with the canonical transformations of classical particle

dynamics. These relations are normally extended to define the canonical
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transformations of fields (Goldstein, 1980; Merceir, 1963). In fact, under the

transformations (7), the Hamilton equations for the fields are preserved.

Our objective is further to maintain under the canonical transformations
the invariant forms for the Euler±Lagrange equations. This demands that the

variation of H 8 take an identical form as d H of (2), i.e.,

d H 8 5 d p 8a - 0q8 a 2 - 0 p 8a d q8 a 2 = ? (p8a d q8 a ) (9)

In fact, (2) and (9) are simultaneously satisfied if one makes the identification

- F i

- q a 5 pi
a (10a)

- F i

- q8 a 5 2 p8i
a (10b)

(i 5 1, 2, 3). At the same time it must be true that

d p 8a - 0q8 a 2 - 0 p 8a d q8 a 5 d p a - 0q
a 2 - 0 p a d q a (11)

We observe that (7) and (11) are identical to the canonical transformation
relations of the classical particles dynamics. Therefore, (11) is known to be

satisfied (Goldstein, 1980).

Equations (7) and (10) define the covariant canonical transformations

of the canonical variables {q a , p m
a ; a 5 1, 2, . . . , N; m 5 0, 1, 2, 3}. We

show in Section 6 the invariance of the Euler±Lagrange equations under

these transformations.

4. MISCELLANEOUS PROPERTIES AND ILLUSTRATIONS

1. We have, according to (11), that the set of canonical variables {q a ,

p b [ p0
b } at a given point (x, t) define the same position±momentum Poisson

bracket relations as in classical particles dynamics (Goldstein, 1980; Mer-

ceir, 1963):

o
a 1 - p s

- p 8a

- q t

- q8 a 2
- q t

- p 8a

- p s

- q8 a 2 5 d t
s (12a)

o
a 1 - q s

- p 8a

- q t

- q8 a 2
- q t

- p 8a

- q s

- q8 a 2 5 0 (12b)

o
a 1 - p t

- p 8a

- p s

- q8 a 2
- p s

- p 8a

- p t

- q8 a 2 5 0 (12c)

2. The relations (7) and (10) take the combined covariant forms
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p m
a 5

- F m

- q a

5
- L

- ( - m q a )
(13a)

p8 m
a 5 2

- F m

- q8 a

5
- L8

- ( - m q8 a )
(13b)

[the second line of (13b) is verified subsequently by (23a)].

3. One can define alternative generating functions as

F m (q, p8 m ) [ F m (q, q8) 1 p8 m
a q8 a (14)

where no summation is implies over the repeated index m on the left-hand

side. We have here

d F m 5 p m
a d q a 2 p8 m

a d q8 a 1 d p8 m
a q8 a 1 p8 m

a d q8 a (15a)

5 p m
a d q a 1 q8 a d p8 m

a (15b)

- F m

- q a 5 p m
a (15c)

- F m

- p8 m
a

5 q8 a (15d)

The generating function F m (q, p8 m ) generalizes F2(q, p8) of classical particle

dynamics (Goldstein, 1980).

Illustrations. We give as examples the following generating functions:

F
m
1 5 f a (q)p8 m

a (16a)

F
m
2 5 f a (q)p8 m

a 1 g m (q) (16b)

These generating functions correspond, respectively, to the transformations

q8 a 5 f a (q), p8 m
a 5

- q b

- q8 a p
m
b (17a)

q8 a 5 f a (q), p8 m
a 5

- q b

- q8 a 1 p m
b 2

- g m

- q b 2 (17b)

The first of these transformations shows that a pure functional transformation

of fields is a covariant canonical transformation.
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5. THE POISSON BRACKET RELATIONS

In view of the covariant relations of (13), each of the pairings (q a , p m
b ),

m 5 0, 1, 2, 3, defines the same local Poisson bracket relations as in (12). These
complete sets of brackets shall be given in a separate article in connection with

the covariant Poisson bracket relations. We proceed here to develop further

the Poisson bracket relations (12) associated with the pairing (q a , p b 5 p0
b ).

The Poisson bracket { P , F } of two observables P (q(k), p (k)) and F (q(l),
p (l)), at the spatial points (k) and (l), is defined as follows (Bjorken and

Drell, 1965). We divide the space into infinitesimal cells of volumes t i

and consider the fields and conjugate momenta at the different cells to be

canonically independent. Then

{ P (q(k), p (k)), F (q(l), p (l))}

5 lim
D Xi ® 0 o

i
o
a

1

t i 1 d P

d p 8a (i)

d F
d q8 a (i)

2
d F

d p 8a (i)

d P
d q8 a (i) 2 (18)

where D xi 5 ( D x1
i , D x2

i , D x3
i) are the dimensions of the ith cell. Here {q8 a (i),

p 8a (i)} is an arbitrary canonical set of the fields and the time components of

the 4-conjugate momenta at the spatial point (i). In fact, according to (12),
the above bracket is invariant under the local canonical transformations.

One finds in particular that

{ p a (x, t), q b (x8, t)} 5 d b
a d (x 2 x8) (19a)

{ p a (x, t), p b (x8, t)} 5 0 (19b)

{q a (x, t), q b (x8, t)} 5 0 (19c)

which are invariant under the local canonical transformations of (12).

6. THE INVARIANT LAGRANGE EQUATIONS

We come here to the conclusion that the Euler±Lagrange equations are
invariant under the covariant canonical transformations (13). The transformed

Lagrangian is, in fact, normally ignored on the particle mechanics level, since

there the Hamiltonian and Lagrangian formalisms are completely equivalent.

For fields, however, the Lagrangian formalism plays a wider role than the

Hamiltonian formalism, where, for instance, the Lagrangian formalism

defines the energy-momentum tensor and the related fields observables, while
these variables cannot be obtained from the Hamiltonian formalism.

We would like, therefore, to define the Lagrangian of the canonically

transformed fields and to establish the invariance of the Euler±Lagrange

equations under the covariant canonical transformations. Let us rewrite (6b) as
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H 8 5 p 8a - 0q8 a 2 (L 2 - m F m ) (20)

Comparison with (1) shows that the Lagrangian of the canonically transformed

fields (q8 a ) is

L8 5 p 8a - tq8 a 2 H 8 (21a)

5 L(q, - q) 2 - m F m (q, q8) (21b)

One can vary either of the above right-hand side expressions to obtain the

same field equations that govern the transformed fields (q8 a ). Thus:
1. We consider, first, expression (21a), in which we use the already

determined variation d H 8 in (9). We find

d L8 5 d ( - 0q8 a ) p 8a 1 - 0q8 a d p 8a 2 ( - 0q8 a ) d p 8a 1 d q8 a - 0 p 8a

1 = ? (p8a d q8 a ) (22a)

5 ( - m p8 m
a ) d q8 a 1 p8 m

a d ( - m q8 a ) (22b)

from which it follows that

- L8

- ( - m q8 a )
5 p8 m

a (23a)

- L8

- q8 a 5 - m p8 m
a (23b)

which yield

- m
- L8

- ( - m q8 a )
2

- L8

- q8 a 5 0 (24)

These are the desired Euler±Lagrange equations for the transformed fields

(q8 a ) in terms of the transformed Lagrangian L8.
2. The second alternative, equation (21b), yields even more information

about the transformed Lagrangian and the field equations. It is also very

instructive to give a detailed analysis of this alternative. By doing so we
show explicitly the role of the 4-generating functions (F m (q, q8)). One has

from (21b) that

d L8 5 p m
a d ( - m q a ) 1

- L

- q a d q a 2 p m
a d ( - m q a )

2 ( d p m
a ) - m q a 1 p8 m

a ( d - m q8 a ) 1 ( d p8 m
a ) - m q8 a

5 1 - L

- q a 2 - m
- L

- ( - m q a ) 2 d q a
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1 - m p m
a d q a 2 ( d p m

a ) - m q a 1 ( d p8 m
a ) - m q8 a 1 p8 m

a ( d - m q8 a ) (25)

We have that

- m p m
a d q a 5 [( - 2F m / - q b - q a ) - m q b 1 ( - 2F m / - q8 b - q a ) - m q8 b ] d q a (26a)

2 ( d p m
a ) - m q a 5 2 [( - 2F m / - q b - q a ) d q b 1 ( - 2F m / - q8 b - q a ) d q8 b ] - m q a (26b)

( d p8 m
a ) - m q8 a 5 2 [( - 2F m / - q b - q8 a ) d q b 1 ( - 2F m / - q8 b - q8 a ) d q8 b ] - m q8 a (26c)

from which it follows that

- m p m
a d q a 2 d p m

a - m q a 1 d p8 m
a - m q8 a

5 2 1 - 2F m

- q8 b - q a - m q a 1
- 2F m

- q8 b - q8 a - m q8 a 2 d q8 b

5 - m p8 m
b d q8 b (27)

Then (25) reduces to

d L8 5 F - L

- q a 2 - m
- L

- ( - m q a ) G d q a 1 - m p8 m
a d q8 a 1 p8 m

a d - m q8 a (28)

Thus at the critical q a of L where

- m
- L

- ( - m q a )
2

- L

- q a 5 0 (29)

we have that

d L8 5 - m p8 m
a d q8 a 1 p8 m

a d - m q8 a (30)

which shows:

(a) The transformed Lagrangian is effectively also of the first order in
the transformed fields

L8 5 L8(q8, - m q8) (31)

(b) Equation (30) in turn, as in alternative 1 above, yields

- m
- L8

- ( - m q8 a )
2

- L8

- q8 a 5 0 (32)

which together with (29) shows that the initial and the canonically transformed

fields simultaneously satisfy the initial and the transformed Euler±Lagrange

equations, respectively. Thus, the initial and transformed set of field equations

and the respective solutions equivalently describe the physical situation.
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7. THE INVARIANCE OF THE FIELD OBSERVABLES

We prove next that the field dynamical observables are, as well, invariant

under the covariant local canonical transformations (13). The energy-momen-
tum tensors of the initial fields (q a ) and the canonically transformed fields

(q8 a ) are, respectively,

T n
m (q) 5

- L

- ( - n q
a )

- m q a 2 d n
m L (33a)

T 8 n
m (q8) 5

- L8

- ( - n q8 a )
- m q8 a 2 d n

m v L8 (33b)

Therefore, the total 4-momentum and angular momentum associated with

the fields (q a ) and (q8 a ) are

xq P m 5 # ( p a - m q a 2 d 0
m L) dx (34a)

xq Jij 5 # (x i p a - j q
a 2 x j p a - iq

a ) dx (34b)

and

xq8 P m 5 # ( p 8a - m q8 a 2 d 0
m L8) dx (35a)

xq8Jij 5 # (x i p 8a - j q8 a 2 x j p 8a - iq8 a ) dx (35b)

respectively. We wish to prove that

xq8 P m 5 xq P m (36a)

xq8 Jij 5 xq Jij (36b)

which would establish the invariance of the given observables under the

covariant canonical transformation (13). In fact, we already have from (8) that

xq8 P0 5 # H 8 dx

5 # (H 1 = ? F) dx

5 xq P0 (37)

On the other hand, it follows from (7) that
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- i F
0 5 p a - iq

a 2 p 8a - iq8 a (38)

Substituting this equation into (35) and integrating by parts, we conclude

(36). This completes the proof that the given dynamical observables are
invariant under the covariant canonical transformations (13).

8. THE COVARIANT CANONICAL EQUATIONS

We have thus established that the covariant canonical transformations

of fields of (13) are genuine symmetry operations. They leave the Hamilton

equations, the Euler±Lagrange equations, and the field observables invariant.

We proceed to define the covariant canonical equations for the fields. The
analysis shows further invariances under the covariant canonical transforma-

tions. We can write (21b) as

L8 1
- F m

- q8 a
- q8 a

- x m 5 L 2
- F m

- q a
- q a

- x m (39)

which equivalently reads

L8 2 p8 m
a

- q8 a

- x m 5 L 2 p m
a

- q a

- x m (40)

Let us then define the ª scalar Hamiltonianº density

M 5 p m
a

- q a

- x m 2 L (41)

We find

M 8 5 M

Thus M is a scalar density under both the Lorentz and the covariant canonical

transformations. We further have that

d M 5 d p m
a - m q a 2 - m p m

a d q a (42a)

5 d p8 m
a - m q8 a 2 - m p8 m

a d q8 a (42b)

Thus

- M

- p m
a

5 - m q a (43a)

- M

- q a 5 2 - m p m
a (43b)

Or equivalently
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- M

- p8 m
a

5 - m q8 a (44a)

- M

- q8 a 5 2 - m p8 m
a (44b)

Equations (43) and (44) are the covariant versions of the Hamilton equations.

These equations now take simple differential forms, rather than the involved

forms of Hamilton equations for the fields (Goldstein, 1980).

Equations (43) could also be obtained from a variational principle by
treating all of the field variables (q a , p m

a ; m 5 0, 1, 2, 3; a 5 1, N ) as

independent. The derivation goes parallel to the case of the particle Hamilton

equations (Goldstein, 1980). It proves that the components of the 4-conjugate

momentum ( p m
a ) have a completely symmetric canonical role.

8.1. An Illustration

We demonstrate the covariant canonical equations (43) by considering

the case of the interacting electromagnetic fields with an external current j m .

The Lagrangian density for this problem reads (Sakurai, 1978)

L 5 2 1±4 ( - m A n 2 - n A m )2 1 j m A m /c (45)

We have that

p m
n 5

- L

- ( - m A n )
(46a)

5 2 ( - m A n 2 - n A m ) (46b)

Here the subscript n of p m
n is the index of the conjugate field (A n ), and the

superscript m is the component index of the 4-conjugate momentum. We

have that

M 5 p m
n - m A n 2 L (47a)

5 2 1±4 ( - m A n 2 - n A m )2 2 j m A m /c (47b)

This leads, according to (43b), to

- M

- A n
5 2

- p m
n

- x m (48a)

5 2 j m /c (48b)

or
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- m ( - m A n 2 - n A m ) 5 2 j m /c (49)

which represents the desired Maxwell equations. It demonstrates the covariant

canonical equations (43).

9. SUMMARY

We have put forward the theory of the covariant canonical formalism
of fields. The covariant canonical transformations are defined by 4-generating

functions F m (q, q8), such that [see (21b)]

L(q, - q) ® L8(q8, - q8) 5 L(q, - q) 2 - m F m (50)

whereas [see (13) and (23a)]

p m
a 5

- L

- ( - m q a )
(51a)

5
- F m

- q a (51b)

and

p8 m
a 5

- L8

- ( - m q8 a )
(52a)

5 2
- F m

- q8 a (52b)

Under the covariant canonical transformations all dynamical equations

of the fields are preserved. The dynamical observables of the fields are, as

well, invariant under these transformations. The covariant canonical transfor-

mations are therefore genuine symmetry operations on fields.

The generalized covariant Hamilton equations for fields also have been

given. Here the canonical equations are defined in terms of a density functional
that is scalar under both the Lorentz and the covariant canonical transforma-

tions. The generalized covariant canonical equations are thus fully invariant

under the covariant canonical transformations.

Within the framework of the covariant canonical transformations, the

equal-time Poisson bracket relations (19) are still satisfied. These relations

correspond to the pairing (q a , p b [ p0
b ) of the fields and the time components

of the 4-conjugate momenta. In a separate article we discuss the corresponding

Poisson brackets corresponding to the pairings (q a , pi
b ) of the fields (q a ) with

each of the spatial components of the conjugate momenta ( pi
b ). These four

sets of Poisson bracket relations unite to define the covariant classical field
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Poisson bracket relations. They correspond to the covariant commutation

relations of the quantum fields.
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